
In a nutshell: An adaptive Euler-Heun method 

Note: This technique was developed as a teaching tool to introduce the Dormand-Prince method by this author. It is 

not described anywhere else. 

Given the initial-value problem (IVP)  
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we would like to approximate the solution y(t) on the interval [t0, tf] with a maximum error of abs per unit time. This 

algorithm uses Taylor series and iteration. We start with an initial h > 0, we will have both minimum and maximum 

step sizes hmin and hmax, respectively. 

1. Let 0k  . 

2. If tk ≥ tf, we are finished: we have approximated values for y(t1) through y(tk), and using cubic splines, we can 

approximate values at any point on the interval [t0, tf]. 

3. If k > N, we will return signalling that too many steps were required to find the approximations. 

4. Let s0 = f (tk, yk) 

 s1 = f (tk + h, yk + hs0), 

and thus, let 
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  .      y and z both approximate y(tk + h) but z is more accurate1 
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.                                                                                                 ah estimates the ideal step size 

6. If a > 1 or h = hmin, we will set 
1k kt t h    and set 

1ky z   and then increment k. 

                              If the ideal step size is greater than our current step size, or if the step size 

is already the minimum we will allow it, use z to approximate y(tk + h) 

7. If 0.9a < ½, update ½h h , 

if 0.9a > 2, update 2h h , 

otherwise update 0.9h ah .               Update h with 0.9ah unless this more than doubles or halves its value 

8. If h < hmin, set 
minh h , and 

if h > hmax, set 
maxh h .                                    Don’t let h exceed the lower or upper bounds we’ve set on it 

9. Return to Step 2. 

                                                           
1 Normally, nutshells don’t have such comments, but they are included here for clarity. 


