In a nutshell: An adaptive Euler-Heun method

Note: This technique was developed as a teaching tool to introduce the Dormand-Prince method by this author. It is not described anywhere else.

Given the initial-value problem (IVP)

$$y^{(1)}(t) = f(t, y(t))$$
$$y(t_0) = y_0$$

we would like to approximate the solution y(t) on the interval $[t_0, t_f]$ with a maximum error of ε_{abs} per unit time. This algorithm uses Taylor series and iteration. We start with an initial h > 0, we will have both minimum and maximum step sizes h_{min} and h_{max} , respectively.

- 1. Let $k \leftarrow 0$.
- 2. If $t_k \ge t_f$, we are finished: we have approximated values for $y(t_1)$ through $y(t_k)$, and using cubic splines, we can approximate values at any point on the interval $[t_0, t_f]$.
- 3. If k > N, we will return signalling that too many steps were required to find the approximations.

4. Let
$$s_0 = f(t_k, y_k)$$

 $s_1 = f(t_k + h, y_k + hs_0),$

and thus, let $y \leftarrow y_k + hs_0$ and $z \leftarrow y_k + h\frac{s_0 + s_1}{2}$. y and z both approximate $y(t_k + h)$ but z is more accurate¹

5. Let
$$a \leftarrow \frac{h\varepsilon_{abs}}{2|y-z|}$$
. *ah* estimates the ideal step size

6. If a > 1 or $h = h_{\min}$, we will set $t_{k+1} \leftarrow t_k + h$ and set $y_{k+1} \leftarrow z$ and then increment k.

If the ideal step size is greater than our current step size, or if the step size is already the minimum we will allow it, use z to approximate $y(t_k + h)$

- 7. If $0.9a < \frac{1}{2}$, update $h \leftarrow \frac{1}{2}h$, if 0.9a > 2, update $h \leftarrow 2h$, otherwise update $h \leftarrow 0.9ah$.
- Update h with 0.9ah unless this more than doubles or halves its value
- 8. If $h < h_{\min}$, set $h \leftarrow h_{\min}$, and if $h > h_{\max}$, set $h \leftarrow h_{\max}$.
- Don't let h exceed the lower or upper bounds we've set on it

9. Return to Step 2.

¹ Normally, nutshells don't have such comments, but they are included here for clarity.